2024-03-27 11:00:00 | America/New_York

Je-Hyung Kim Ulsan National Institute of Science and Techonology (UNIST)

A versatile quantum playground with solid-state quantum emitters

Solid-state quantum emitters have attracted much attention as an integrated source of photonic and spin qubits, which are basic elements for a range of quantum applications. Recent advances in the generation, manipulation, and integration of these emitters have demonstrated a variety of quantum resources: bright quantum light sources, quantum memories, and spin-photon interfaces. In particular, controllable quantum emitters in photonic cavities or waveguides enable scalable quantum interactions between multiple photons and emitters. Given their high performance and scalability, quantum emitters are taking the next stages towards scalable, integrated quantum systems on photonic integrated circuits or fiber optics. Therefore, all quantum operations are efficiently possible in compact optics systems. In this talk, I introduce important challenges and recent races in scalable, integrated quantum photonics systems and new approaches to interfacing quantum emitters to commercial fiber platforms efficiently

Speaker's Bio

Je-Hyung Kim received his Ph.D. in Physics at the Korea Advanced Institute of Science and Technology (KAIST), South Korea, in 2014. He was a postdoc researcher at the University of Maryland from 2014 to 2017. Since 2017, he has joined the Department of Physics at the Ulsan National Institute of Science and Technology (UNIST), South Korea, and is now an associate professor at UNIST. Major research topics of his group are fundamental studies of quantum light-matter interactions based on solid-state quantum emitters and their applications to quantum information technologies.